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A highly efficient method, Conformation-Family Monte Carlo (CFMC), has been developed for searching
the conformational space of a macromolecule and identifying its low-energy conformations. This method
maintains a database of low-energy conformations that are clustered into families. The conformations in this
database are improved iteratively by a Metropolis-type Monte Carlo procedure, together with energy
minimization, in which the search is biased towards investigating the regions of the lowest-energy families. The
CFMC method has the advantages of our earlier potential-smoothing methods (in that it ‘coarse-grains’ the
conformational space and exploits information about nearby low-energy states), but avoids their disadvantages
(such as the displacement of the global minimum at large smoothings). The CFMC method is applied to a test
protein, domain B of Staphylococcal protein A. Independent CFMC runs yielded the same low-energy families
of conformations from random starts, indicating that the thermodynamically relevant conformational space of
this protein has been explored thoroughly. The CFMC method is highly efficient, performing as well as or better
than competing methods, such as Monte Carlo with minimization, conformational-space annealing, and the self-
consistent basin-to-deformed-basin method.

Introduction?). — Efficient methods for global energy optimization have many
applications in computational chemical biology, such as X-ray and NMR structural
refinements, the docking of ligands to macromolecules, and the ab initio prediction of
protein and crystal structures. Three classes of such methods have been studied in our
laboratory. The first class is that of Monte Carlo methods with minimization, such as the
original MCM method [1][2] and the electrostatically driven Monte Carlo (EDMC)
method [3]. The second class is that of deformation-based methods [4] such as the
diffusion-equation method (DEM), the distance-scaling method (DSM), and their
descendant as the self-consistent basin-to-deformed-basin method (SCBDBM) [5][6].
The third class is that of genetic (recombination) algorithms such as conformational
space annealing (CSA) [7][8]. It should be noted that, despite their differences, these
successful methods share certain properties; e.g., 1) structural modification steps are
followed immediately by energy minimization, and 2) previously explored states are
used to guide the future exploration of the conformational space. In addition, the
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proteins; SUMSL: secant unconstrained minimization solver; CTC: Cornell Theory Center; NIH: National
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SCBDBM and CSA methods share a third property, namely, 3) they both enforce a
broad sampling of the conformational space, either by smoothing or by requiring that
conformations maintain a minimal distance from one another.

A new method, Conformation-Family Monte Carlo (CFMC), is introduced here
and tested on a small protein. The CFMC method can be considered as an extension of
the original MCM method since, at each iteration of the method, a conformation is
perturbed, locally minimized and then subjected to an accept/reject criterion. However,
the CFMC method also is conceptually related to deformation-based methods, in that
the CFMC conformations are clustered into families, which ‘coarse-grain’ the
conformational space. As in deformation methods, this allows the CFMC method to
exploit information about the local structure of the energy landscape to guide the
global exploration. More generally, the CFMC method shares the properties / -3 cited
above.

This article is organized as follows. In the next section, we describe the CFMC
method in detail. The following section describes the application of this method to the
well-studied test protein, domain B of Staphylococcal protein A (SpA) [5][8][9].
CFMC performs much better than MCM and SCBDBM, and is roughly equal to CSA
in efficiency. A detailed comparison of these methods is also given in this section.

Description of the CFMC Method. — The central element of the CFMC method is
the conformation-family database, which is an ensemble of conformations clustered
into families. To control the computational expense, the number of families and
conformations within each family are bounded to N; families and N, conformations,
respectively. This section describes in detail how this database is created and modified
during a CFMC run. For the applications described in this article, we employed the
united-residue (UNRES) model and energy function [10], which are described in the
Appendix.

The conformation-family database for a CFMC run is initialized by successively
generating N; random conformations and minimizing them. (The local minimizations
of this study were carried out using the SUMSL algorithm [11].) In the unlikely event
that two randomly generated and minimized conformations have an rmsd less than a
defined threshold R., the lower-energy conformation is kept in the database, and
another random conformation is generated. The final N; conformations and their
families constitute the initial conformation-family database.

A newly generated conformation is said to be connected to a family of
conformations, if there is at least one conformation in the family that differs from it
in rmsd by less than a threshold R;.

The CFMC Protocol (see flowchart in Fig. 1). In each iteration of a CFMC run, a
new conformation C' is generated from a conformation C already present in the
conformation-family database. This conformation C is chosen from a specific family F,
denoted the generative family. As the CFMC simulation progresses, this generative
family can change, as described below. For the first CFMC iteration, the generative
family is set to the lowest-energy family in the initial conformation-family database.

An iteration of CFMC consists of four steps, as follows:
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Step 1. A conformation C is chosen from the generative family F, with a probability
proportional to its Boltzmann weight.

Step 2. This conformation C is modified to yield a new conformation C'. (The
methods for modifying conformations are described below. ) If the new conformation C’
is closer than R, in rmsd to another conformation C” in the database, the lower-energy
conformation of the pair is stored in the database and the algorithm returns to Step 1.

Step 3a. If the new conformation C’ is unconnected to any family in the database, a
new family F’ is created whose sole member is C'. (Of course, conformations may be
added to this new family in subsequent CFMC iterations, as in Step 3 b.) If the number
of families in the database exceeds the limit N, the family with the highest energy is
eliminated. The algorithm then jumps to Step 4.

Step 3b. 1If the new conformation C’ is connected to exactly one family F' in the
database, the conformation is added to the family. If the number of conformations in
the family exceeds the limit N, the conformation with the highest energy is eliminated.
This elimination may split the original family into two families; if so, the database is
updated accordingly. The algorithm then jumps to Step 4.

Step 3 c. If the new conformation C’ is connected to more than one family in the
database, these families are merged into a single family F’. If the number of
conformations in the merged family exceeds the limit V., the conformations with the
highest energy should be eliminated. However, this may also eliminate the conforma-
tions that caused the families to be merged in the first place, leading to a kind of
oscillation in which families are repeatedly merged and re-divided immediately. Hence,
two families are merged if and only if the new conformation C' meets two criteria
designed to avoid such oscillations. First, C' must have a lower energy than every
conformation of the higher-energy family and, second, C' must have a lower energy
than at least one conformation of the lower-energy family. If these two criteria are not
met, the conformation (' is rejected and the algorithm returns to Step I; otherwise, the
algorithm proceeds to Step 4.

Step 4. 1f the new family F’ found in Step 3 is not identical to the original generative
family Fof Step 1, a Metropolis criterion is applied to determine whether to make F’ the
generative family. F’ becomes the new generative family if it has a lower energy than F,
or if its Boltzmann factor exp (— fAE) is greater than a randomly generated number in
the interval (0, 1), where 5 =1/kT as usual, and AFE is the energy difference between
families F and F’. (The energy of a family is defined as that of its lowest-energy
conformation.) If this Metropolis criterion is not met, F remains the generative family.
At this point, the algorithm returns to Step I and a new CFMC iteration begins.

The Methods for Producing New Conformations. In the second step of a CFMC
iteration, the conformation C is modified to yield a new conformation C'. This
modification is carried out in several ways, which are described in this subsection.

There are two general classes of moves used in the CFMC method: internal (or
local) moves, intended to improve the low-energy conformations within a family, and
external (global) moves, intended to search the conformational space for new families.
Within each class, there are two kinds of moves: perturbation and averaging (see
Appendix for definitions of the variables in the UNRES model).
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Perturbations are used for searching the space of the backbone torsional angles y, as
well as that of the side-chain positions. Moves perturbing only one backbone torsional
angle (or only one side-chain position) are distinguished from moves perturbing a
sequence of consecutive backbone torsional angles (or side chains); for the latter, the
number of variables to be perturbed is chosen randomly between 1 and the maximum,
pre-defined, number. Each perturbation is carried out in one of two ways: a) an angle is
changed randomly within a pre-defined range, or b) an angle is chosen according to the
distribution of angles already present in the database; both ways are used with equal
probability. The only difference between internal and external moves of type a) is that
the pre-defined range for external moves is larger than that for internal moves. The
difference between internal and external moves of type b) lies in the distribution of
angles used. For internal moves, the distribution of the particular variable being
perturbed is computed from the current conformation-family database; for example, if
variable 5 is being perturbed, the distribution of variable 5 in the present conformation-
family database is used. For external moves, where the larger variation of a variable is
desired, the distribution of the perturbed variable is calculated from the initial
conformation-family database (obtained by minimizing randomly generated confor-
mations, as noted above). Altogether, eight kinds of perturbation moves are used: two
single backbone torsional-angle moves (external and internal), two multiple consec-
utive backbone-torsional-angle moves (external and internal), two single side-chain
moves (external and internal, both consisting of perturbations of the ag- and S
angles), and two multiple consecutive side-chain moves.

An entirely different kind of move is averaging, for which two different
conformations are necessary. For external averaging, these conformations are chosen
from different families while, for internal averaging, they are chosen from the same
family. From these two conformations, an averaged (or interpolated) conformation is
then calculated using a randomly chosen ‘mixing ratio’ x (in the range from 0 to 1).
Thus, every variable of the averaged conformation (i.e., asc, fsc, Vi, and 6;) is
calculated according to Egn. I:

vi=vD.x+v?-(1-x) (1)

where x is the ‘mixing ratio’, and v is a variable. This type of search focuses mostly on
differences between conformations; the averaged conformation would indeed differ
very little from the initial two conformations in regions where their secondary
structures are similar.

Comparison with Related Optimization Methods. The CFMC method is unusual as a
Monte Carlo method in that an ensemble of states is simulated, rather than the single-
state characteristic of Metropolis Monte Carlo simulations. In this regard, the CFMC
method resembles other ensemble-oriented simulation methods such as the CSA and
SCBDBM methods. These three ensemble-oriented methods share other similarities as
well. For example, they all maintain a database of conformations, which is initialized to
a set of randomly generated (and minimized) conformations; this database is then
gradually ‘pruned’ into shape by successive random moves and accept/reject criteria. In
all three methods, the members of this structural database are required to remain well-
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separated in order to ensure a broad sampling of the conformational space; as the
simulation progresses, this separation requirement is gradually relaxed, allowing the
ensemble to converge to the appropriate thermal distribution.

However, the CFMC method also has significant differences from these other
methods. In particular, the families of the CFMC method constitute an additional level
of organization in the database of conformations; in effect, CFMC moves are made not
between conformations, but between families of conformations. Unlike the SCBDBM
method, the true undeformed energy is evaluated in the CFMC method; the
‘smoothing’ of the CFMC method occurs by clustering the accepted conformations
into families.

The move-regeneration scheme of the CFMC method differs significantly from the
CSA and SCBDBM methods. As detailed above, the CFMC relies heavily on
perturbations of one or a few adjacent dihedral angles, whereas the CSA method
employs a recombination scheme in which pieces of candidate conformations are
combined and minimized. Two CFMC moves are distantly related to CSA moves. The
first such CFMC move is that in which a single dihedral angle is chosen from a known
statistical distribution for that angle; the analogous move in CSA occurs when a single
dihedral angle is exchanged. However, this analogy does not extend to moves involving
multiple adjacent dihedral angles; in CSA, the values of these angles are exchanged as a
block, whereas, in the CFMC method, these angles are chosen independently. The
second such CFMC move is that in which two conformations are averaged; this
corresponds loosely to the various recombinations that occur in the CSA method.
Despite their superficial resemblance, these moves are quite different; the CSA
method combines separate pieces of the two conformations, whereas the CFMC
method interpolates their conformational variables evenly.

Computational Details. All calculations were carried out on a PC-Linux cluster in
our laboratory, and on the PC-Windows NT cluster in the Cornell Theory Center.
Numerical parameters for the CFMC method were chosen as follows. The inter-family
cutoff (R;) varied between 5 A (initially) and 2 A (at the end of a simulation); the intra-
family cutoff (R,) varied between 2 A (initially) and 1 A (at the end of a simulation);
both cutoffs were reduced linearly every 2,500 local minimizations. The maximum
number N; of families was set at 20, and the maximum number N, of conformations in
any family was set at 50. The total number of local minimizations carried out during a
full CFMC run was limited to 50,000.

The program has been parallelized at the coarse-grain level, i.e., local minimizations
are carried out in parallel on different processors. A single CFMC run is divided into
several threads (usually five); all of them use the same database of conformations. The
master processor carries out all the database management, as well as generation of trial
conformations, and acceptance decisions. Usually 26 processors were used per run, and
a single simulation (50,000 local minimizations) of our model system (domain B of
Staphylococcal protein A) took about 3.5 wall-clock hours on our PC-Linux cluster.

Results and Discussion. - The CFMC method has been applied to a benchmark
protein, a truncated version (residues 10-55) of the B domain of Staphylococcal
protein A. Several high-resolution NMR structures of the untruncated domain and its
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homologues have been published [12], indicating that it folds into a classic up-down,
three-helix bundle with nearly parallel helical axes. Global energy minimization of the
truncated protein has been carried out in several laboratories, using very different
energy functions and minimization protocols [5][8][9]. These computational studies
agree that the global energy minimum is a three-helix bundle in which the first two
helices are aligned, but the third (C-terminal) helix crosses at a significant angle. These
studies also agree in identifying a ‘mirror-image’ fold as having the next lowest energy
after the global minimum.

To assess the effectiveness of the CFMC method in finding the global minimum and
in exploring the conformational space of protein A, comparative simulations were
carried out using the classical MCM method [1] and the CSA method [7]. An equal
amount of computational resources (as measured by the number of local minimiza-
tions) was used in all simulations.

A total of 10 simulations using CFMC were carried out starting from the randomly
generated conformations, as described in the previous section. In 6 of them, the global
minimum, with energy —127.16 kcal/mol was located. In the remaining 4 simulations,
another conformation, slightly higher in energy than the previous one (— 126.86 kcal/
mol), was found. Both conformations belong to the native-fold family, and their rmsd
difference in the C* positions is 1.5 A. As shown in Fig. 2, the only structural difference
between these conformations occurs in the five C-terminal residues. In the global
minimum conformation, this pentapeptide has no regular secondary structure, whereas,
in the competing low-energy (—126.86 kcal/mol) conformation, this pentapeptide
forms a small helical fragment positioned at a 60° angle to the third helix.

Fig. 2. Stereoviews of the two conformations found by the CFMC method as the lowest-energy conformations in
different runs. The global minimum is shown in thick lines (—127.16 kcal/mol), and the second minimum is
shown in thin lines (— 126.86 kcal/mol). Both structures belong to the same family.

The three comparative simulations using the CSA method found conformations
very close to the global minimum; one found the global minimum itself, while the other
two found conformations differing from the global minimum in the orientations of a
few side chains. The results of the ten CFMC simulations (solid lines) and the three
CSA simulations (dashed lines) are compared in Fig. 3. By contrast, the classical MCM
was significantly less successful, as shown in Fig. 4. Only two out of the ten MCM
simulations located the global minimum, and half of the runs were stuck in high-energy
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Fig. 3. Comparison between the CFMC and CSA methods. The abscissa shows the progress of the simulations

(represented by the number of energy evaluations), and the ordinate plots the energy of the lowest-energy

conformation obtained for a given number of energy evaluations during the simulations. The ten CFMC

simulations are shown with solid lines, and the three CSA simulations are shown with dashed lines. As noted in

the main text, the low-energy conformations obtained from the CSA and CFMC methods differed only in two
side-chain positions.

conformations. These conformations did not adopt the native fold and their energies
were 2—7 kcal/mol higher than the global minimum energy.

A great advantage of the CFMC method is that it not only locates the lowest-energy
family of conformations, but also generates a broad distribution of conformations
covering a large region of the potential-energy hypersurface. Such a distribution may be
analyzed by plotting rmsd from the global minimum conformation vs. energy for the
whole set of conformations. The plot of a typical distribution of conformations
generated by the CFMC method during one complete simulation is shown in Fig. 5,4, in
which each conformation is represented by a single dot. The pathway to the global
minimum (global-minimum trajectory) is plotted as a solid line connecting the
consecutive, lowest-energy conformations obtained during the run. The content of the
database at the end of the simulation is shown in Fig. 5,b; the number of conformations
therein is significantly lower than in Fig. 5,a, because high-energy conformations (and
families) are gradually removed from the database during the simulation.

At the beginning of a simulation, changes in the topology of the lowest-energy
conformation are large, as indicated by the large variations in the global minimum
trajectory in Fig. 5. The lack of significant focusing in particular parts of the
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Fig. 4. Comparison between the CFMC and classical MCM methods. The abscissa shows the progress of the

simulations (represented by the number of energy calculations), and the ordinate plots the energy of the lowest-

energy conformation obtained for the given number of energy evaluations during the simulations. The ten
CFMC simulations are shown with solid lines, while the ten MCM simulations are shown with dashed lines.

conformational space at the beginning of a simulation is also shown by the uniform
distribution of the conformations (no clustering) on the right side of Fig. 5,a. As the
algorithm progresses, the fluctuations decrease, and the method focuses on the
important, low-energy families of conformations. All low-energy families could be
classified into two distinct folds: the native fold (lower part of Fig. 5,a and b) and its
mirror image (higher part of Fig. 5,a and b). Both classes of families are well-sampled
during the simulation.

A detailed analysis of the families present in the database at the end of a typical
simulation is shown in Fig. 6,a—c. There are 20 different families present in the
database, 4 of them adopting the mirror-image fold, and the other 16 adopting the
native fold. The topological differences between families are shown in three plots: the
plot of rmsd from the lowest-energy mirror-image conformation vs. rmsd from the
global-minimum conformation (Fig. 6,a), the plot of energy vs. rmsd from the global-
minimum conformation (Fig. 6,b), and the plot of energy vs. rmsd from the lowest-
energy mirror-image conformation (Fig. 6,c¢). The conformations belonging to differ-
ent families are represented by different geometrical symbols (circles, triangles, etc. ).
Fig. 6,a, clearly shows that the two folds (native and mirror-image) are geometrically
well separated from one another, because their families do not overlap. Fig. 6,b and c,
show that, for each fold, there is a positive correlation between the energy and the rmsd
distance from the lowest-energy conformation adopting that fold.
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The lowest-energy conformations of the four lowest-energy families adopting the
native-like fold are shown in Fig. 7, while the lowest-energy conformations from the
two lowest-energy families of the mirror-image fold are shown in Fig. 8. The main
difference between low-energy, native-like families is the structure of the C-terminus.
In the global minimum conformation (Fig. 7,a), the C-terminal residues are packed
parallel to the end of the N-terminal helix. By contrast, the other three families have C-
termini rotated by 90° relative to the global-minimum conformation. In the second
family, the C-terminus points towards the middle of the N-terminal helix (Fig. 7,b); in
the third family, it is packed antiparallel to the N-terminal helix (Fig. 7,¢) while, in the
fourth family, the C-terminal helix extends continuously to include the C-terminal
residues (Fig. 7,d). The two lowest-energy families of the mirror-image fold exhibit
small differences in the loop regions and at the C-terminus (Fig. 8,a and b).

We also discovered a conformation that may reflect an intermediate fold between
the global-minimum and the mirror-image folds (Fig. 9). The global-minimum
conformation can be described by its inter-helical angles Q,,=175°, 2,;=133°, and
Q,3=50°. For comparison, the mirror-image fold has inter-helical angles 2,,=108°,
0Q,;=124°, and Q3;=17°. Thus, in the global-minimum fold, the N-terminal and the
middle helices are aligned and the C-terminal helix crosses over them whereas, in the
‘mirror-image’ fold, the N-terminal and C-terminal helices are aligned, and the middle
helix crosses over them. By contrast, in the intermediate conformation, the three
helices are nearly perpendicular to each other, with inter-helical angles £, =110°,
£2,;,=99° and £,;=289°. Thus, there seems to be a low-energy pathway connecting the
global-minimum and ‘mirror-image’ folds, in which the N-terminal helix moves
between the middle and C-terminal helices (Fig. 9).

The results of the simulations for protein A clearly show the advantage of the
family-based approach to MCM over the classical implementation of the MCM
algorithm. The CFMC method not only correctly located low-energy structures in all
the runs carried out, but also generated a broad distribution of structures in the
conformational space. The effectiveness of the method is comparable to that of the
CSA method; in all CFMC simulations, the family containing the global-minimum
structure was located correctly.

The families of low-energy conformations generated by the CFMC method may be
applicable in simulating the folding of proteins. If such families can be identified with
the kinetic species of the folding protein, and if the transition rates between such
families can be determined, then a relatively simple master equation can be solved to
reproduce the kinetics of folding [13].

This research was supported by grants from the National Science Foundation (MCB95-13167), and from the
National Institutes of Health (GM-14312). Some of the computations were carried out at the Cornell Theory
Center (CTC), which is funded in part by the NIH National Center for Research Resources, and the CTC’s
Advanced Cluster Computing Consortium.

Appendix: The UNRES Protein Representation and Potential. - Recently, a novel united-residue model of
proteins (UNRES) has been proposed [10]. This model has been shown to be computationally efficient and
remarkably accurate in predicting native protein conformations [8][14]. This section reviews the properties of
this model.

The Representation of Proteins in UNRES. The polypeptide backbone of a protein is represented in
UNRES by its C* trace. By assumption, all virtual bond lengths are 3.8 A, i.e., cis-peptide bonds are not
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Fig. 8. Stereoviews of the lowest-energy conformations of the two lowest-energy families adopting the mirror-
image fold. As in Fig. 7, the symbols below each stereofigure correspond to those plotted in Fig. 6.
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Fig. 9. Stereoview of a low-energy conformation that adopts an intermediate fold between the global-minimum
and mirror-image folds. The filled circle below the stereofigure corresponds to that used for the same family of
conformations in Fig. 6.



2228 HELVETICA CHIMICA ACTA — Vol. 83 (2000)

Fig. 10. United-residue representation of a polypeptide chain. The interaction sites are side-chain centroids of
different sizes (SC) and peptide-bond centers (p) indicated by solid circles, while the C*-atoms (small empty
circles) are introduced only to assist in defining the geometry. The virtual C*—C* bonds have a fixed length of
3.8 A, corresponding to a trans-peptide group; the virtual-bond (0) and dihedral (y) angles are variable. Each
side chain is attached to the corresponding C*-atom with a fixed ‘bond length’, bsc, that varies between residue
types; likewise, the radius of side-chain sphere is fixed but varies between residue types. The variable side-chain
‘bond angle’, agc, is defined by the vector SC; and the bisector of the angle defined by Cy,, C¢, and Cf,,.
Similarly, the variable side-chain ‘dihedral angle’, fisc, is defined as a counterclockwise rotation about the
bisector, starting from the C,; side of the C¢ ,, C¢, C¢, frame.

considered. Therefore, the only conformational variables of the backbone are 6 (the angle between successive
C*—C«virtual bonds) and y (the dihedral angle between four successive C*-atoms), as indicated in Fig. 10. The
peptide bond itself is modeled as a point dipole positioned in the middle of each C*—C* virtual bond.

The protein side chains are represented in UNRES by simple spheres of different sizes for each type of
residue. The center of this side-chain sphere is separated from its C“-atom by a constant distance bgc that varies
between residue types. Consequently, the only conformational variables for the side chain are agc (the conical
angle formed by the side chain) and S (its dihedral angle), as indicated in Fig. 10.

The UNRES Energy Function. Each residue in the UNRES model has only two centers of interaction: the
peptide-bond dipoles and the side-chain spheres. In particular, the C*-atoms serve to define the chain geometry,
but do not contribute to the energy evaluations. This drastic reduction in the number of interaction centers
(when compared to all-atom models of proteins) renders UNRES much more efficient computationally. This
efficiency is essential for a thorough exploration of the thermodynamically relevant space.

The UNRES energy function is given by Eqn. 2.

U = Z USC,SC, + Z USC,p, + Wer Z Up,p, + Wior Z Ulm(%-) + Wioe Z[Ub(el) + Urol(an z)] + Weorr Ucorr (2>
i<j i*j i<j i i

Uscssc, represents the interaction energy between the side chains, which contains their solvent interactions
implicitly. Usc,, represents the excluded-volume interactions that prevent the overlap of the peptide bonds with
the side chains. Uy, represents the energy of electrostatic interactions between peptide groups, including their
tendency to form backbone H-bonds. U, represents the intrinsic energy of rotation about the virtual C*—C*
bonds, which biases the backbone dihedral angles in order to simulate the intrinsic secondary structure
propensities of the protein. U, represents the bending energy of the virtual-bond valence angles (which also
contributes to secondary structure formation), while U, represents the energy of different rotameric states of
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the side chains. Finally, U, is a multibody correlation energy, which arises from the fact that some degrees of
freedom are eliminated when moving to the reduced UNRES representation from the all-atom representation.
The w coefficients are the weights of the respective energy terms.

The terms Uscsc» Uior, Uy, and Uy, were parameterized originally from a set of 195 high-resolution non-
homologous structures from the PDB [10]. In this parameterization, the distribution p(X) of the conformational
variables X obtained from the PDB is, by assumption, related to the corresponding restricted free energy u (X)

by the equation:
P(X) = po(X) exp[ - fu(X)] (3)

where p,(X) is the reference distribution function in the absence of any interactions.

The parameters of the excluded-volume potential Uy, were chosen to reproduce the typical backbone
geometries of the polypeptide chain in short model helices and sheets, e.g., to give the screw sense of the helix
characteristic of a-helices and not of 3,,- or z-helices. The expression for U,, was derived by averaging the
energy of electrostatic interactions of the peptide groups and parametrized by fitting the average restricted free-
energy surface corresponding to the interaction of two peptide groups, calculated by using the ECEPP/2 force
field [15]. The current UNRES force field also includes multibody terms, U, that arise from correlated
interactions of two neighboring pairs of peptide groups. The weights of the energy terms were determined by
optimization of the Z-score function of the phosphocarrier protein from Streptococcus faecalis (an 89-residue
alf protein).

The U,,, term has since been re-parametrized using the ECEPP/3 potential energy [16]. This approach is
preferable, since the parametrization relies on a well-tested potential function based on semi-empirical and
model-compound studies, rather than on a statistical survey of the PDB. This newly re-parametrized U,
potential was used in these investigations with its weight w,,, set equal to 1.
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